FanoutNet: A Neuralized PCB Fanout Automation Method Using Deep Reinforcement Learning
نویسندگان
چکیده
In modern electronic manufacturing processes, multi-layer Printed Circuit Board (PCB) routing requires connecting more than hundreds of nets with perplexing topology under complex constraints and highly limited resources, so that takes intense effort time human engineers. PCB fanout as a pre-design has been proved to be an ideal technique reduce the complexity by pre-allocating resources pre-routing. However, current design heavily relies on experience engineers, there is no existing solution for automation in industry, which limits quality automation. To address problem, we propose neuralized method deep reinforcement learning. best our knowledge, are first literature fanout. We combine Convolution Neural Network (CNN) attention-based network train policy model value model. The models learn representations layout netlist make decisions evaluations place employ Proximal Policy Optimization (PPO) update parameters models. addition, apply router improve routing. Extensive experimental results real-world industrial benchmarks demonstrate approach achieves 100% routability all cases improves wire length average 6.8%, makes significant improvement compared state-of-the-art methods.
منابع مشابه
Autonomous Quadrotor Landing using Deep Reinforcement Learning
Landing an unmanned aerial vehicle (UAV) on a ground marker is an open problem despite the effort of the research community. Previous attempts mostly focused on the analysis of hand-crafted geometric features and the use of external sensors in order to allow the vehicle to approach the land-pad. In this article, we propose a method based on deep reinforcement learning that only requires low-res...
متن کاملAutomatic Bridge Bidding Using Deep Reinforcement Learning
Bridge is among the zero-sum games for which artificial intelligence has not yet outperformed expert human players. The main difficulty lies in the bidding phase of bridge, which requires cooperative decision making under partial information. Existing artificial intelligence systems for bridge bidding rely on and are thus restricted by human-designed bidding systems or features. In this work, w...
متن کاملEfficient Deep Web Crawling Using Reinforcement Learning
Deep web refers to the hidden part of the Web that remains unavailable for standard Web crawlers. To obtain content of Deep Web is challenging and has been acknowledged as a significant gap in the coverage of search engines. To this end, the paper proposes a novel deep web crawling framework based on reinforcement learning, in which the crawler is regarded as an agent and deep web database as t...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملA Deep Reinforcement Learning Chatbot
We present MILABOT: a deep reinforcement learning chatbot developed by the Montreal Institute for Learning Algorithms (MILA) for the Amazon Alexa Prize competition. MILABOT is capable of conversing with humans on popular small talk topics through both speech and text. The system consists of an ensemble of natural language generation and retrieval models, including template-based models, bag-of-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2023
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v37i7.26030